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extract_dist Extracting distances to nearest seed source for point data

Description

Extracts a distance for the inventory plots. The distance to the nearest seed source is used for the
analysis of the regeneration potential.

Usage

extract_dist(raster, geom, species)

Arguments

raster Raster dataset with tree species classification of specific tree species and tree
species groups.

geom Geodata representing the study area. This can be a polygon or point dataset.
This describes the outer boundary of the study area. A buffer of 1000 m is
placed around the Bounding box to possibly take into account seed trees outside
the study area.

species Represents the numerical value by which the tree species of interest was encoded
in the raster dataset.

Value

Numeric vector with distances of every inventory plot to the nearest seed source of a specific tree
species.

Examples

## Create raster data set
set.seed(2023)
rr <- terra::rast(
matrix(sample(0:10, 20 * 20, replace = TRUE),

nrow = 20, ncol = 20))

## Create vector data set
vec <- terra::vect(rbind(c(5,10), c(5,15)))

## Extract distance for the inventory plot
extract_dist(raster=rr, geom=vec, species=10)
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k_exponential_power Dispersal kernels from exponential power family

Description

k_exponential_power computes the value, multiplied by N , of a dispersal kernel from the expo-
nential power family that includes, as special cases, Gaussian kernels and kernels that follow an
exponential function of the distance.

Usage

k_exponential_power(x, par, N = 1, d = NCOL(x))

Arguments

x Numeric matrix of positions x relative to the seed source, or vector of distances
∥x∥ to the seed source.

par Numeric vector with two elements representing the log-transformed scale and
shape parameters a and b.

N The multiplier N .

d The spatial dimension.

Details

The dispersal kernel, i.e. spatial probability density of the location of a seed relative to its source,
is here given by

k(x) =
bΓ(d/2)

2πd/2adΓ(d/b)
e−(∥x∥/a)b ,

which corresponds to a probability density of the distance given by

p(r) =
b

adΓ(d/b)
rd−1e−(r/a)b ,

where d is the spatial dimension, ∥ ∥ denotes the Euclidean norm and the normalizing constants
involve the gamma function; see Bateman (1947), Clark et al. (1998), Austerlitz et al. (2004),
Nathan et al. (2012) for the planar case. This means the bth power of the distance has a gamma
distribution with shape parameter d/b and scale parameter ab.

The kernel has its maximum at zero and represents a rather flexible family that includes, for b = 2
the classical Gaussian kernels and for b = 1, kernels decreasing exponentially with the distance.
For b < 1 the distance distribution is fat-tailed in the sense of Kot et al. (1996). Such kernels have
consequently been applied in a number of theoretical studies that address dispersal (Ribbens et al.
1994, Bullock et al. 2017).

Value

Numeric vector of function values k(x) multiplied by N .
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References

Bateman, A. (1947). Contamination in seed crops: III. relation with isolation distance. Heredity 1,
303–336. doi:10.1038/hdy.1947.20

Kot, M., Lewis, M.A., van den Driessche, P. (1996). Dispersal Data and the Spread of Invading
Organisms. Ecology 77(7), 2027–2042. doi:10.2307/2265698

Ribbens, E., Silander Jr, J.A., Pacala, S.W. (1994). Seedling recruitment in forests: calibrating mod-
els to predict patterns of tree seedling dispersion. Ecology 75, 1794–1806. doi:10.2307/1939638

Clark, J.S., Macklin, E., Wood, L. (1998). Stages and spatial scales of recruitment limitation in
southern Appalachian forests. Ecological Monographs 68(2), 213–235. doi:10.2307/2657201

Clark, J.S. (1998). Why trees migrate so fast: confronting theory with dispersal biology and the
paleorecord. The American Naturalist 152(2), 204–224. doi:10.1086/286162

Austerlitz, F., Dick, C.W., Dutech, C., Klein, E.K., Oddou-Muratorio, S., Smouse, P.E., Sork,
V.L. (2004). Using genetic markers to estimate the pollen dispersal curve. Molecular Ecology
13, 937–954. doi:10.1111/j.1365294X.2004.02100.x

Bullock, J. M., Mallada González, L., Tamme, R., Götzenberger, L., White, S.M., Pärtel, M., Hooft-
man, D.A. (2017). A synthesis of empirical plant dispersal kernels. Journal of Ecology 105, 6–19.
doi:10.1111/13652745.12666

Nathan, R., Klein, E., Robledo-Arnuncio, J.J., Revilla, E. (2012). Dispersal kernels: review, in
Clobert, J., Baguette, M., Benton, T.G., Bullock, J.M. (eds.), Dispersal ecology and evolution,
186–210. doi:10.1093/acprof:oso/9780199608898.003.0015

Examples

k_exponential_power(2:5, par=c(0,0), d=2)

k_lognormal Dispersal kernels for log-normal distance distributions

Description

k_lognormal computes the value, multiplied by N , of a dispersal kernel based on seeds having a
distance with a log-normal distribution from the their source.

Usage

k_lognormal(x, par, N = 1, d = NCOL(x))

Arguments

x Numeric matrix of positions x relative to the seed source, or vector of distances
∥x∥ to the seed source.

par Numeric vector with two elements representing log-transformed scale and shape
parameters, given by the median distance a and by the variance b of the under-
lying normal distribution.

N The multiplier N .
d The spatial dimension.

https://doi.org/10.1038/hdy.1947.20
https://doi.org/10.2307/2265698
https://doi.org/10.2307/1939638
https://doi.org/10.2307/2657201
https://doi.org/10.1086/286162
https://doi.org/10.1111/j.1365-294X.2004.02100.x
https://doi.org/10.1111/1365-2745.12666
https://doi.org/10.1093/acprof%3Aoso/9780199608898.003.0015
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Details

The dispersal kernel, i.e. spatial probability density of the location of a seed relative to its source,
is here given by

k(x) =
Γ(d/2)

2πd/2 ∥x∥d
√
2πb

e−
1
2b (log(∥x∥/a))

2

=
Γ(d/2)ed

2b/2

2πd/2ad
√
2πb

e−
1
2b (log

∥x∥
a +db)2 ,

which corresponds to a probability density of the distance given by

p(r) =
1

r
√
2πb

e−
1
2b (log(r/a))

2

=
eb/2

a
√
2πb

e−
1
2b (log

r
a+b)2 ,

where d is the spatial dimension, ∥ ∥ denotes the Euclidean norm and the normalizing constant of
the kernel involves the gamma function; see Greene and Johnson (1989), Stoyan and Wagner (2001)
for the planar case. Thus, the distance is assumed to have the log-normal distribution such that the
log-distance has a normal distribution with mean log a and variance b. Here log k(x) is a quadratic
function of log ∥x∥ with a maximum at log a − db, while log p(r) is a quadratic function of log r
with a maximum at log a− b.

This kernel is particularly suitable if the maximum regeneration density is not directly at the seed
source (e.g. Janzen–Connell effect), cf. Nathan et al. (2012).

Value

Numeric vector of function values k(x) multiplied by N .

References

Greene, D.F., Johnson, E.A. (1989). A model of wind dispersal of winged or plumed seeds. Ecology
70(2), 339–347. doi:10.2307/1937538

Stoyan, D., Wagner, S. (2001). Estimating the fruit dispersion of anemochorous forest trees. Ecol.
Modell. 145, 35–47. doi:10.1016/S03043800(01)003854

Nathan, R., Klein, E., Robledo-Arnuncio, J.J., Revilla, E. (2012). Dispersal kernels: review, in
Clobert, J., Baguette, M., Benton, T.G., Bullock, J.M. (eds.), Dispersal ecology and evolution,
186–210. doi:10.1093/acprof:oso/9780199608898.003.0015

Examples

k_lognormal(2:5, par=c(0,0), d=2)

k_power Power-law dispersal kernels

Description

k_power computes the value, multiplied by N , of a dispersal kernel that follows a power law of a
constant a plus the distance.

https://doi.org/10.2307/1937538
https://doi.org/10.1016/S0304-3800%2801%2900385-4
https://doi.org/10.1093/acprof%3Aoso/9780199608898.003.0015
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Usage

k_power(x, par, N = 1, d = NCOL(x))

Arguments

x Numeric matrix of positions x relative to the seed source, or vector of distances
∥x∥ to the seed source.

par Numeric vector with two elements representing the log-transformed parameters
a and b.

N The multiplier N .

d The spatial dimension.

Details

The dispersal kernel, i.e. spatial probability density of the location of a seed relative to its source,
is here given by

k(x) =
Γ(d/2)

2πd/2adB(d, b)
(1 +

∥x∥
a

)−(b+d),

which corresponds to a probability density of the distance given by

p(r) =
1

adB(d, b)
rd−1(1 +

r

a
)−(b+d),

where d is the spatial dimension, ∥ ∥ denotes the Euclidean norm and the normalizing constants
involve the beta and gamma functions; see Nathan et al. (2012) for the planar case (with b replaced
by b − d). This means the distance is da

b times a random variable having an F distribution with 2d
and 2b degrees of freedom. This is a fat-tailed distribution for all choices of the parameter b.

Value

Numeric vector of function values k(x) multiplied by N .

References

Nathan, R., Klein, E., Robledo-Arnuncio, J.J., Revilla, E. (2012). Dispersal kernels: review, in
Clobert, J., Baguette, M., Benton, T.G., Bullock, J.M. (eds.), Dispersal ecology and evolution,
186–210. doi:10.1093/acprof:oso/9780199608898.003.0015

Austerlitz, F., Dick, C.W., Dutech, C., Klein, E.K., Oddou-Muratorio, S., Smouse, P.E., Sork,
V.L. (2004). Using genetic markers to estimate the pollen dispersal curve. Molecular Ecology
13, 937–954. doi:10.1111/j.1365294X.2004.02100.x

Examples

k_power(2:5, par=c(0,0), d=2)

https://doi.org/10.1093/acprof%3Aoso/9780199608898.003.0015
https://doi.org/10.1111/j.1365-294X.2004.02100.x
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k_t Dispersal kernels from spatial t distribution

Description

k_t computes the value, multiplied by N , of the dispersal kernel from Clark et al. (1999) that
represents a multivariate t distribution.

Usage

k_t(x, par, N = 1, d = NCOL(x))

Arguments

x Numeric matrix of positions x relative to the seed source, or vector of distances
∥x∥ to the seed source.

par Numeric vector with two elements representing the log-transformed parameters
a and b.

N The multiplier N .

d The spatial dimension.

Details

The dispersal kernel, i.e. spatial probability density of the location of a seed relative to its source,
is here given by

k(x) =
Γ((b+ d)/2)

πd/2adΓ(b/2)
(1 +

∥x∥2

a2
)−(b+d)/2,

which corresponds to a probability density of the distance given by

p(r) =
2

adB(d/2, b/2)
rd−1(1 +

r2

a2
)−(b+d)/2,

where d is the spatial dimension, ∥ ∥ denotes the Euclidean norm and the normalizing constants
involve the beta and gamma functions; see Clark et al. (1999) and Austerlitz et al. (2004) for the
planar case (with a, b replaced by

√
u, 2p and a, 2b − d, respectively). This means the position

is a√
b

times a random vector having a standard d-variate t distribution with b degrees of freedom

(a standard Gaussian vector divided by
√

z/b, where z is independent and chi-squared distributed
with b degrees of freedom), and the squared distance is da2

b times a random variable having an F
distribution with d and b degrees of freedom.

This results from the kernel being defined as a mixture of Gaussian kernels with an inverse variance
having a gamma distribution with shape parameter b

2 and inverse scale parameter a2

2 , which for
a = 1 is a chi-squared distribution with b degrees of freedom.

The dispersal kernel always has its maximum at zero, and the distance has a fat-tailed distribution
for all choices of b.
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Value

Numeric vector of function values k(x) multiplied by N .

References

Clark, J.S., Silman, M., Kern, R., Macklin, E., HilleRisLambers, J. (1999). Seed dispersal near
and far: patterns across temperate and tropical forests. Ecology 80, 1475–1494. doi:10.1890/0012-
9658(1999)080[1475:SDNAFP]2.0.CO;2

Austerlitz, F., Dick, C.W., Dutech, C., Klein, E.K., Oddou-Muratorio, S., Smouse, P.E., Sork,
V.L. (2004). Using genetic markers to estimate the pollen dispersal curve. Molecular Ecology
13, 937–954. doi:10.1111/j.1365294X.2004.02100.x

Examples

k_t(2:5, par=c(0,0), d=2)

k_weibull Dispersal kernels for Weibull distance distributions

Description

k_weibull computes the value, multiplied by N , of the dispersal kernel from Tufto et al. (1997)
based on seeds having a distance with a Weibull distribution from their source.

Usage

k_weibull(x, par, N = 1, d = NCOL(x))

Arguments

x Numeric matrix of positions x relative to the seed source, or vector of distances
∥x∥ to the seed source.

par Numeric vector with two elements representing the log-transformed scale and
shape parameters a and b of the distance distribution.

N The multiplier N .

d The spatial dimension.

Details

The dispersal kernel, i.e. spatial probability density of the location of a seed relative to its source,
is here given by

k(x) =
bΓ(d/2)

2πd/2ab
∥x∥b−d

e−(∥x∥/a)b ,

which corresponds to a probability density of the distance given by

p(r) =
b

ab
rb−1e−(r/a)b ,

https://doi.org/10.1890/0012-9658%281999%29080%5B1475%3ASDNAFP%5D2.0.CO%3B2
https://doi.org/10.1890/0012-9658%281999%29080%5B1475%3ASDNAFP%5D2.0.CO%3B2
https://doi.org/10.1111/j.1365-294X.2004.02100.x
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where d is the spatial dimension, ∥ ∥ denotes the Euclidean norm and the normalizing constants in-
volve the gamma function; see Tufto et al. (1997) for the planar case. Thus, the distance is assumed
to have the Weibull distribution with scale parameter a and shape parameter b. Equivalently, the bth
power of the distance has an exponential distribution with scale parameter ab.

Consequently, if and only if b < 1, the distance distribution has a heavier tail than an exponential
distribution, although with tail probabilities still decreasing faster than any power law; it is a fat-
tailed distribution in the sense of Kot et al. (1996). The kernel coincides with a Gaussian kernel in
the special case b = d = 2.

Value

Numeric vector of function values k(x) multiplied by N .

References

Tufto, J., Engen, S., Hindar, K. (1997). Stochastic dispersal processes in plant populations, Theo-
retical Population Biology 52(1), 16–26. doi:10.1006/tpbi.1997.1306

Austerlitz, F., Dick, C.W., Dutech, C., Klein, E.K., Oddou-Muratorio, S., Smouse, P.E., Sork,
V.L. (2004). Using genetic markers to estimate the pollen dispersal curve. Molecular Ecology
13, 937–954. doi:10.1111/j.1365294X.2004.02100.x

Kot, M., Lewis, M.A., van den Driessche, P. (1996). Dispersal Data and the Spread of Invading
Organisms. Ecology 77(7), 2027–2042. doi:10.2307/2265698

Nathan, R., Klein, E., Robledo-Arnuncio, J.J., Revilla, E. (2012). Dispersal kernels: review, in
Clobert, J., Baguette, M., Benton, T.G., Bullock, J.M. (eds.), Dispersal ecology and evolution,
186–210. doi:10.1093/acprof:oso/9780199608898.003.0015

Examples

k_weibull(2:5, par=c(0,0), d=2)

predict_quax Prediction of potential regeneration densities

Description

Prediction of the potential regeneration density as a function of the distance to the nearest seed tree.

Usage

predict_quax(distmap, quax)

Arguments

distmap A SpatRaster with distances to the nearest seed tree is used for the prediction of
the potential regeneration densities. Usually a result of the seed_tree_distmap()
function

quax A quax object is used for the prediction. This is a parameterised dispersal func-
tion using quantile regression.

https://doi.org/10.1006/tpbi.1997.1306
https://doi.org/10.1111/j.1365-294X.2004.02100.x
https://doi.org/10.2307/2265698
https://doi.org/10.1093/acprof%3Aoso/9780199608898.003.0015
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Details

, defined by the study area. The potential regeneration density is calculated and given for each raster
cell.

Value

A SpatRaster with the same resolution as the input raster containing the regeneration density on the
same scale (e.g. numbers per hectare) as in the input data.

Examples

## Prepare artificial data:
set.seed(0)
r <- rgamma(200, shape=2, scale=150)
simulated.data <- data.frame(distance = r, density = rpois(length(r),
k_lognormal(r, par=c(6,0), N=1000000, d=2)))

## Run quax function:
f1 <- quax(x = simulated.data$distance, y = simulated.data$density,

tau = 0.9, fun = k_lognormal)

## Create raster data set
rr <- terra::rast(
matrix(sample(0:10, 20 * 20, replace = TRUE),

nrow = 20, ncol = 20))

## Compute distance for prediction area
distance <- seed_tree_distmap(raster = rr, species = "10")

## Prediction
p <- predict_quax(distmap = distance, quax = f1)
terra::plot(p)

quax Estimating potential regeneration densities by quantile regression

Description

quax estimates parameters of a spatial dispersal kernel that describes the regeneration potential as
the τ th quantile of the regeneration density. Here τ is between 0 and 1, with typical values close to
1 representing the situation that the full regeneration potential is realized only at a small fraction of
all sites.

Usage

quax(...)

## Default S3 method:
quax(
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...,
y,
tau,
fun = k_lognormal,
weights = 1,
dim = 2,
par = c(log.a = 8, log.b = 1)

)

## S3 method for class 'formula'
quax(
formula,
data,
tau,
fun = k_lognormal,
subset,
weights,
na.action,
offset,
...

)

Arguments

... Vector of positions x1, ..., xn or distances to the seed source as required by the
specific dispersal kernel. Optionally, further arguments passed to optim, to the
default method or to the kernel.

y Vector of observed values y1, ..., yn of the regeneration density of the inventory
plot.

tau Numeric value between 0 and 1. Specifies the quantile τ used in the regression.

fun Function representing the dispersal kernel kθ, multiplied by N , that is assumed
for the regeneration potential. Values allowed are k_lognormal, k_t, k_power,
k_weibull, k_exponential_power or a custom function with nonnegative val-
ues whose parameters include, in addition to the arguments in ... not consumed
by optim or the default method, the scaling factor N and the spatial dimension
d (see Examples). The default, k_lognormal, is to fit a model with log-normal
distance distributions.

weights Numeric vector of optional non-negative weights wi of the observations in the
estimation procedure. Default is 1.

dim The spatial dimension, by default equal to 2.

par Numeric vector of initial values for the parameter vector θ.

formula A formula of the form y ~ x.

data, subset, na.action, offset
For the formula interface: Further arguments passed to model.frame (along
with weights).
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Details

The function estimates the parameters N and θ of the regeneration potential Nkθ by minimizing

n∑
i=1

wiρτ (yi −Nkθ(xi)),

where ρτ (u) =
∫ u

0
τ − 1s<0 ds =

{ uτ if u≥0
u(τ−1) if u<0 (Koenker and Bassett 1978, Chapter 6.6 in

Koenker 2005). The preceding line, after subtracting the same expression for N = 0 and substitut-
ing s = yi − tkθ(xi) in the integral, becomes

∫ N

0

∑n
i=1 wikθ(xi)(1yi<tkθ(xi) − τ) dt, and any N

such that the last integrand is ≤ 0 for t < N and ≥ 0 for t > N , which can always be found as
the integrand is increasing in t, minimizes this integral. The integrand being the difference of the
sum of wikθ(xi) over the i with yi < tkθ(xi) and τ times the sum over all i, with relevant terms
for nonzero kθ(xi), this means that the estimate of N for a given vector θ can be computed as a τ th
quantile. This is implemented as an inner, nested minimization, the result of which is minimized in
θ using optim.

This is a rather naive approach to quantile regression that appears to work reasonably well for scaled
dispersal kernels Nkθ as considered here, see Appendix A in Axer et al. (2021). For general quan-
tile regression problems the more sophisticated procedure nlrq in the package quantreg, based on
Koenker and Park (1996), is expected to provide better results.

In particular, quax is subject to the usual numerical issues inherent in optimization: It can get stuck
in a local minimum or altogether miss a minimum if the initial values (as specified by the argument
par) are too far off or if the objective function exhibits bad behavior. Problems can further arise
in the dispersal kernels if parameter values passed on a log scale become too large. It is therefore
recommended to visually check the results (see Examples). Also, the optim arguments method
and control can be added in ... to select and tune the optimization algorithm, but note that the
objective function is usually not differentiable.

See Koenker (2005) for a detailed exposition of quantile regression.

Value

An objcet of class quax containing the estimated function, including an attribute o containing the
results of optim. Generic functions with methods defined for quax objects invoke these methods;
see summary.quax for an example.

References

Koenker, R., Bassett, G. (1978). Regression quantiles. Econometrica 46(1), 33–50. doi:10.2307/
1913643

Axer, M., Schlicht, R., Wagner, S. (2021). Modelling potential density of natural regeneration
of European oak species (Quercus robur L., Quercus petraea (Matt.) Liebl.) depending on the
distance to the potential seed source: Methodological approach for modelling dispersal from in-
ventory data at forest enterprise level. Forest Ecology and Management 482, 118802. doi:10.1016/
j.foreco.2020.118802

Koenker, R., Park, B.J. (1996). An interior point algorithm for nonlinear quantile regression. Jour-
nal of Econometrics 71(1–2), 265–283. doi:10.1016/03044076(96)845076

Koenker, R. (2005). Quantile regression. Cambridge University Press. doi:10.1017/CBO9780511754098

https://doi.org/10.2307/1913643
https://doi.org/10.2307/1913643
https://doi.org/10.1016/j.foreco.2020.118802
https://doi.org/10.1016/j.foreco.2020.118802
https://doi.org/10.1016/0304-4076%2896%2984507-6
https://doi.org/10.1017/CBO9780511754098
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See Also

Function nlrq in the package quantreg.

Examples

## Prepare artificial data:
set.seed(0)
r <- rgamma(200, shape=2, scale=150)
simulated.data <- data.frame(distance = r, density =

rpois(length(r), k_lognormal(r, par=c(6,0), N=1000000, d=2)))
plot(density ~ distance, simulated.data)

## Run quax function:
f1 <- quax(x = simulated.data$distance, y = simulated.data$density,

tau = 0.9, fun = k_lognormal)
summary(f1)
curve(f1(x), add=TRUE)

## Do the same using formula interface:
f1 <- quax(density ~ distance, simulated.data,

tau = 0.9, fun = k_lognormal)
summary(f1)
#quantreg::nlrq(density ~ k_lognormal(distance,c(log.a,log.b),N=N,d=2),
# simulated.data, start = c(log.a=6,log.b=0,N=1e6), tau = 0.9) # similar

## Use another quantile:
f2 <- quax(density ~ distance, simulated.data,

tau = 0.99, fun = k_lognormal)
summary(f2)
curve(f2(x), add=TRUE, lwd=0)

## Show effect of weights:
f3 <- quax(density ~ distance, simulated.data,

tau = 0.9, fun = k_lognormal, weights = distance)
summary(f3)
curve(f3(x), add=TRUE, lty=3)

## Compare various dispersal models:
fun <- c("k_lognormal","k_t","k_weibull","k_power","k_exponential_power")
for (i in seq_along(fun))

curve(quax(density ~ distance, simulated.data,
tau = 0.9, fun = get(fun[i]), weights = distance)(x),
add=TRUE, col=i, lty=3)

legend("topright", fun, col=seq_along(fun), lty=3)

## Use positions in computation:
simulated.data$position <- r *

(\(a) cbind(cos(a),sin(a))) (rnorm(length(r)))
f3 <- quax(density ~ position, simulated.data,

tau = 0.9, fun = k_lognormal, weights = distance)
summary(f3)
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## Show problems with bad initial values and try another parameterization:
curve(quax(density ~ distance, simulated.data, par = c(log.a=0,log.b=0),

tau = 0.99, fun = k_lognormal)(x), add=TRUE, lty=2)
curve(quax(density ~ distance, simulated.data, par = c(a=1,b=1),

tau = 0.99, fun = function(x,par,N,d) if (any(par<=0)) rep(NA,NROW(x))
else k_lognormal(x,log(par),N,d))(x), add=TRUE, lty=2)

## Use custom variant of lognormal model that includes a shift:
plot(simulated.data$position)
f4 <- quax(density ~ position, simulated.data,

tau = 0.9, par = c(8, 1, 0, 0),
fun = function(x, par, N, d)
k_lognormal(x - rep(par[-(1:2)],each=NROW(x)), par[1:2], N, d)

)
summary(f4)

regeneration Regeneration densities at inventory plots and potential dispersal dis-
tances to nearest seed trees

Description

A dataset containing the regeneration densities of beech, oak and Douglas fir of the inventory plots
and the distance to the nearest conspecific nearest seed tree.

Usage

data(regeneration)

Format

A data frame with 484 rows and 7 variables

• id. An identifier for each inventory plot as an integer

• distance_beech. Distance in m from the plot to the nearest beech (0–3206.57)

• distance_oak. Distance in m from the plot to the nearest oak (0–1481.2)

• distance_dgl. Distance in m from the plot to the nearest Douglas fir (0–1807)

• oak_regen. Regeneration density of oak (N/ha) of the plot (0–30)

• beech_regen. Regeneration density of beech (N/ha) of the plot (0–30)

• douglas_regen. Regeneration density of Douglas fir (N/ha) of the plot (0–30)
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seed_tree_distmap Distance map to nearest seed source

Description

Creation of a distance map for the study area. The distance to the nearest seed source is calculated
for every raster cell.

Usage

seed_tree_distmap(raster, species)

Arguments

raster Raster data set with tree species classification of specific tree species and tree
species groups.

species Represents the numerical value by which the tree species of interest is encoded
in the raster data set.

Value

A SpatRaster object containing the distances to seed source. The object has the same resolution and
extent as the input raster.

Examples

## Create raster data set
rr <- terra::rast(
matrix(sample(0:10, 20 * 20, replace = TRUE),

nrow = 20, ncol = 20))

## Compute distance for study area
distance <- seed_tree_distmap(raster = rr, species = "10")

## Plot the seed_tree_distmap
terra::plot(distance)

summary.quax Summarizing quantile regression fits of potential regeneration densi-
ties

Description

This function is the summary method for class quax objects as returned by quax.
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Usage

## S3 method for class 'quax'
summary(object, ...)

Arguments

object The function returned by quax.

... not in use here

Details

The value component of the result can be used to compare the quality of the fit of different dispersal
kernels for the same quantile to the same data.

Value

A list with the following components:

coefficients The parameters of the estimated dispersal kernel.

value The attained value of the objective function that is minimised in the quantile regression.

Examples

## Prepare artificial data:
set.seed(0)
r <- rgamma(200, shape=2, scale=150)
simulated.data <- data.frame(distance = r, density =

rpois(length(r), k_lognormal(r, par=c(6,0), N=1000000, d=2)))
plot(density ~ distance, simulated.data)

## Fit a log-normal and a power-law dispersal kernel to the data:
f1 <- quax(density ~ distance, simulated.data,

tau = 0.9, fun = k_lognormal)
f2 <- quax(density ~ distance, simulated.data,

tau = 0.9, fun = k_power)

## Compare both fits:
summary(f1)
summary(f2)
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